

Ref: *Ref: ESA AO/1-11041/22/I-NS*DI05: Output Data Product (OP)
Page: 1

L2A+

Enhanced Aeolus L2A for depolarizing targets and impact on aerosol research and NWP

Output Data Product (OP)

Deliverable Item 05 [DI05] (Final Version - FV)

Submitted to: Edward Malina (ESA)

	Name	Function	Date
Prepared by:	E. Proestakis	WP1000 – NOA	11/2024
	K. Rizos	WP3000 – NOA	11/2024
	A. Gkikas	WP3000 – NOA	11/2024
	A. A. Floutsi	WP2000 – TROPOS	11/2024
	H. Baars	WP2000 – TROPOS – CoPI	11/2024
Approved by:	V. Amiridis	PI	11/2024

National Observatory of Athens (NOA) Institute for Astronomy, Astrophysics, Space Applications & Remote Sensing (IAASARS) Vas. Pavlou & I. Metaxa, 15236 Penteli, Greece & Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany & European Centre for Medium-Range Weather Forecasts [ECMWF] Reading, United Kingdom

ESA-L2A+ Deliverable Item 05 [DI05]

$$L2A+$$

Ref:Ref: ESA AO/1-11041/22/I-NSDI05:Output Data Product (OP)Page:2

[This page is intentionally left blank.]

L2A+

Ref: *Ref: ESA AO/1-11041/22/I-NS* DI05: Output Data Product (OP) 3

Page:

Table of Contents

1. ESA-L2A+ DI05 – Overview
2. Unique feature mask over Mindelo and PollyXT optical properties5
2.1. Unique feature mask over Mindelo5
2.2. PollyXT optical properties8
2.3. Access Credentials20
2.4. Contact Person
3. The L2A+ Product
3.1. Introduction
3.2. Filename Format
3.3. Indicative Study-Case: The Aeolus-Cabo Verde overpass on the 10th of September 2021 21
3.3.1. Description of the atmospheric scene
3.3.5. L2A+ - ESA-PollyXT validation29
3.4. The L2A+ products
3.5. Access Credentials
3.6. Contact Person
Acronyms and Abbreviations52
List of Figures
List of Tables

Ref:Ref: ESA AO/1-11041/22/I-NSDI05:Output Data Product (OP)Page:4

1. ESA-L2A+ DI05 – Overview.

This document consists the Deliverable Item 05 (DI05) – Optical Products "OPs" – Final Version (FV) submitted to the European Space Agency (ESA) by the consortium of the project "Enhanced Aeolus L2A for depolarizing targets and impact on aerosol research and NWP" (L2A+). DI05– OPs reports on the (1) filenames, (2) variables, (3) access credentials, and (4) contact persons of L2A+ WP2000 – "ASKOS ground-based datasets in support of L2A+" and WP3000 – "Development of the L2A+ aerosol product" output product datasets (Figure 1).

Figure 1: ESA-L2A+ WP2000, WP3000, and WP4000 input and outputs relevant to DI05.

Ref:Ref: ESA AO/1-11041/22/I-NSDI05:Output Data Product (OP)Page:5

2. Unique feature mask over Mindelo and PollyXT optical properties

2.1. Unique feature mask over Mindelo.

The unique height-resolved feature mask utilizes lidar, cloud radar and microwave radiometer data and allows for high-performance cloud and feature detection (Combined Cloudnet + EARLINET lidar target categorization).

The filenames follow the structure: "YYYYMMDD_regridded_data_for_mindelo.nc"

L2A+

Table 1: Provides the vertical profiles of the co-component of backscatter coefficient along the Aeolus overpass.

Group	Subgrou p	Variable	Unit s	Dimension s	Description
FEATUR E MASK	-	cloudnet_LWP	g/m ²	1D	Liquid water path
		cloudnet_radar_gas_attenuation	dB	2D	Two-way radar attenuation due to atmospheric gases
		cloudnet_radar_liquid_attenuatio n	dB	2D	Two-way radar attenuation due to liquid water
		cloudnet_radar_v	m/s	2D	Doppler velocity
		cloudnet_radar_width	m/s	2D	Spectral width
		cloudnet_radar_Z	dBZ	2D	Radar reflectivity factor
		cloudnet_radar_Z_error	dB	2D	Error in radar reflectivity factor
		cloudnet_target_classification	-	2D	Target classification
		combined_target_classification	-	2D	Target classification
		height	m	1D	Height above mean sea level
		model_pressure	Pa	2D	Pressure
		model_temperature	K	2D	Temperature
		polly_ang_532_1064	-	2D	Quasi backscatter-

DI05: Output Data Product (OP)

				related Ångström
				exponent at
				532-1064 nm
	polly att bsc 1064	sr-1	2D	Attenuated
	pony_att_bsc_1004	m-1	20	hackscatter at
				1064 nm
	polly att bsc 522	sr-1	2D	Attenuated
	pony_utt_000_002	m ⁻¹	20	hackscatter at
		111		522 nm
	polly bsc 1064	sr-1	2D	Ouasi aerosol
	pony_0004	m ⁻¹	20	backscatter
				coefficients at
				1064 nm
	polly bsc 1064 quality flag	-	2D	OC
	ponj_000_1004_4mmij_mg			information
	polly bsc 532	sr-1	2D	Ouasi aerosol
	F - <u>j</u> <u>-</u> <u>-</u> - <u>-</u>	m-1		backscatter
				coefficients at
				532 nm
	polly bsc 532 quality flag	-	2D	QC
				information
	polly_pardepol_532	-	2D	quasi particle
				depolarizatio
				n ratio at 532
				nm
	polly_target_classification	-	2D	Target
				classification
	polly_voldepol_532	-	2D	Volume
				depolarizatio
				n ratio at 532
				nm
	polly_voldepol_532_quality_flag	-	2D	QC
				information
	time	UTC	1D	Hours of day

Ref:Ref: ESA AO/1-11041/22/I-NSDI05:Output Data Product (OP)

Page: 7

Name	Long Name	Туре
😂 20210909_regridded_data_for_mindelo.nc	20210909_regridded_data_for_mindelo.nc	Local File
cloudnet_LWP	Liquid water path	1D
cloudnet_radar_gas_attenuation	Two-way radar attenuation due to atmospheric gases	2D
cloudnet_radar_liquid_attenuation	Two-way radar attenuation due to liquid water	2D
cloudnet_radar_v	Doppler velocity	2D
cloudnet_radar_width	Spectral width	2D
cloudnet_radar_Z	Radar reflectivity factor	2D
cloudnet_radar_Z_error	Error in radar reflectivity factor	2D
cloudnet_target_classification	Target classification	2D
combined_target_classification	Target dassification	2D
height	Height Axis	1D
model_pressure	Pressure	2D
model_temperature	Temperature	2D
polly_ang_532_1064	quasi backscatter-related angstroem exponent at 532-1064	2D
polly_att_bsc_1064	attenuated backscatter at 1064 nm	2D
polly_att_bsc_532	attenuated backscatter at 532 nm	2D
polly_bsc_1064	quasi aerosol backscatter coefficients at 1064 nm	2D
polly_bsc_1064_quality_flag	polly bsc 1064 quality flag	2D
polly_bsc_532	quasi aerosol backscatter coefficients at 532 nm	2D
polly_bsc_532_quality_flag	polly bsc 532 quality flag	2D
polly_pardepol_532	quasi particle depolarization ratio at 532 nm	2D
polly_target_classification	Target classification	2D
polly_voldepol_532	volume depolarization ratio at 532 nm	2D
polly_voldepol_532_quality_flag	polly voldepol 532 quality flag	2D
time	Time Axis	1D

Figure 2: Indicative file output of Unique feature mask over Mindelo.

Ref: *Ref: ESA AO/1-11041/22/I-NS*DI05: Output Data Product (OP)Page: 8

2.2. PollyXT optical properties.

The dataset includes vertically-resolved aerosol optical properties derived from the PollyXT ground-based, multiwavelength, Raman, polarization lidar measurements.

The filenames follow the structure: "YYYY_MM_DD_weekday_CPV_HH_MM_SS_HHMM_HHMM_profiles.nc"

Group	Subgroup	Variable	Units	Dimensio ns	Description		
PollyXT PROFIL ES	_	aerBsc_aeronet_1064	sr-1 m- 1	1D	Aerosol backscatter coefficient at 1064 nm retrieved with constrained- AOD method		
		aerBsc_aeronet_355	sr-1 m- 1	1D	Aerosol backscatter coefficient at 355 nm retrieved with constrained- AOD method		
			aerBsc_aeroi	aerBsc_aeronet_532	sr-1 m- 1	1D	Aerosol backscatter coefficient at 532 nm retrieved with constrained- AOD method
		aerBsc_klett_1064	sr ⁻¹ m ⁻	1D	Aerosol backscatter coefficient at 1064 nm retrieved with Klett method		
		aerBsc_klett_355	sr-1 m- 1	1D	Aerosol backscatter coefficient at 355 nm retrieved		

Table 2: Detailed description of the variables within the PollyXT profile product.

L2A+

DI05: Output Data Product (OP)

				with Klett method
	aerBsc_klett_532	Sr ⁻¹ m ⁻ 1	1D	Aerosol backscatter coefficient at 532 nm retrieved with Klett method
	aerBsc_raman_1064	Sr ⁻¹ m ⁻	1D	Aerosol backscatter coefficient at 1064 nm retrieved with Raman method
	aerBsc_raman_355	Sr ⁻¹ m ⁻	1D	Aerosol backscatter coefficient at 355 nm retrieved with Raman method
	aerBsc_raman_532	sr-1 m- 1	1D	Aerosol backscatter coefficient at 532 nm retrieved with Raman method
	aerBsc_RR_1064	sr-1 m- 1	1D	Aerosol backscatter coefficient at 1064 nm retrieved with rotation Raman method
	aerBsc_RR_355	sr-1 m- 1	1D	Aerosol backscatter coefficient at 355 nm retrieved with rotation Raman method
	aerBsc_RR_532	ST ⁻¹ m ⁻	1D	Aerosol backscatter coefficient at 532 nm retrieved with rotation

DI05: Output Data Product (OP)

				Raman method
	aerExt_raman_1064	m-1	1D	Aerosol extinction coefficient at 1064 nm retrieved with Raman method
	aerExt_raman_355	m ⁻¹	1D	Aerosol extinction coefficient at 355 nm retrieved with Raman method
	aerExt_raman_532	m ⁻¹	1D	Aerosol extinction coefficient at 532 nm retrieved with Raman method
	aerExt_RR_1064	m ⁻¹	1D	Aerosol extinction coefficient at 1064 nm retrieved with rotation Raman method
	aerExt_RR_355	m-1	1D	Aerosol extinction coefficient at 355 nm retrieved with rotation Raman method
	aerExt_RR_532	m-1	1D	Aerosol extinction coefficient at 532 nm retrieved with rotation Raman method
	aerLR_raman_1064	sr	1D	Aerosol lidar ratio at 1064 nm retrieved with Raman method

DI05: Output Data Product (OP)

aerLR_raman_355 aerLR_raman_532	sr	1D 1D	Aerosol lidar ratio at 355 nm retrieved with Raman method Aerosol lidar ratio at 532 nm retrieved with Raman
aerLR_RR_1064	sr	1D	method Aerosol lidar ratio at 1064 nm retrieved with rotation Raman method
aerLR_RR_355	sr	1D	Aerosol lidar ratio at 355 nm retrieved with rotation Raman method
aerLR_RR_532	sr	1D	Aerosol lidar ratio at 532 nm retrieved with rotation Raman method
altitude	m	-	Height of lidar above mean sea level
end_time	secon ds since 1970- 01-01 00:0 0:00 UTC	-	Time UTC of the end of the current measureme nt
height	m	1D	Height above ground
latitude	degre es north	-	Latitude of the site
longitude	degre es east	-	Longitude of the site
LR_aeronet_1064	sr	-	Aerosol lidar ratio at 1064 nm retrieved

DI05: Output Data Product (OP)

				with constrained- AOD method
	LR_aeronet_355	sr	-	Aerosol lidar ratio at 355 nm retrieved with constrained- AOD method
	LR_aeronet_532	sr	-	Aerosol lidar ratio at 532 nm retrieved with constrained- AOD method
	parDepol_klett_1064	-	1D	Particle linear depolarizati on ratio at 1064 nm with Klett backscatter
	parDepol_klett_355	-	1D	Particle linear depolarizati on ratio at 355 nm with Klett backscatter
	parDepol_klett_532	-	1D	Particle linear depolarizati on ratio at 532 nm with Klett backscatter
	parDepol_raman_1064	-	1D	Particle linear depolarizati on ratio at 1064 nm with Raman backscatter
	parDepol_raman_355	-	1D	Particle linear depolarizati on ratio at 355 nm with

DI05: Output Data Product (OP)

			Raman backscatter
parDepol_raman_532	-	1D	Particle linear depolarizati on ratio at 532 nm with Raman backscatter
Dracellra	hPa	1D	Air pressure
reference_height_1064	m	1D 1D	Reference height for 1064 nm
reference_height_355	m	1D	Reference height for 355 nm
reference_height_532	m	1D	Reference height for 532 nm
RH	%	1D	Relative humidity
shots	-	-	Accumulate d laser shots
start_time	secon ds since 1970- 01-01 00:0 0:00 UTC	-	Time UTC of the start of the current measureme nt
temperature	degre e Celsi us	1D	Air temperature
uncertainty_aerBsc_aeronet_1 064	Sr ⁻¹ m ⁻	1D	Uncertainty of aerosol backscatter coefficient at 1064 nm
uncertainty_aerBsc_aeronet_ 355	Sr ⁻¹ m ⁻ ₁	1D	Uncertainty of aerosol backscatter coefficient at 355 nm
uncertainty_aerBsc_aeronet_ 532	Sr ⁻¹ m ⁻	1D	Uncertainty of aerosol backscatter coefficient at 532 nm
uncertainty_aerBsc_klett_106 4	${\operatorname{Sr}}^{-1}{\operatorname{m}}^{-1}{\operatorname{m}}^{-1}$	1D	Uncertainty of aerosol

DI05: Output Data Product (OP)

				backscatter coefficient at 1064 nm
	uncertainty_aerBsc_klett_355	sr-1 m- 1	1D	Uncertainty of aerosol backscatter coefficient at 355 nm
	uncertainty_aerBsc_klett_532	Sr ⁻¹ m ⁻	1D	Uncertainty of aerosol backscatter coefficient at 532 nm
	uncertainty_aerBsc_raman_1 064	sr-1 m- 1	1D	Uncertainty of aerosol backscatter coefficient at 1064 nm
	uncertainty_aerBsc_raman_3 55	sr-1 m- 1	1D	Uncertainty of aerosol backscatter coefficient at 355 nm
	uncertainty_aerBsc_raman_5 32	sr-1 m- 1	1D	Uncertainty of aerosol backscatter coefficient at 532 nm
	uncertainty_aerBsc_RR_1064	sr-1 m- 1	1D	Uncertainty of aerosol backscatter coefficient at 1064 nm
	uncertainty_aerBsc_RR_355	sr ⁻¹ m ⁻	1D	Uncertainty of aerosol backscatter coefficient at 355 nm
	uncertainty_aerBsc_RR_532	sr-1 m- 1	1D	Uncertainty of aerosol backscatter coefficient at 532 nm
	uncertainty_aerExt_raman_1 064	m ⁻¹	1D	Uncertainty of aerosol extinction coefficient at 1064 nm
	uncertainty_aerExt_raman_3 55	m-1	1D	Uncertainty of aerosol extinction

DI05: Output Data Product (OP)

				coefficient at
	uncertainty_aerExt_raman_5	m-1	1D	Uncertainty
	32			of aerosol
				extinction
				coefficient at
	uncortainty oprExt DD 1064	m -1	1D	532 IIII Uncortainty
	uncertainty_aerExt_KK_1004	111 -	ID	of aerosol
				extinction
				coefficient at
				1064 nm
	uncertainty aerExt RR 355	m-1	1D	Uncertainty
	<i>y</i> 000			of aerosol
				extinction
				coefficient at
				355 nm
	uncertainty_aerExt_RR_532	m-1	1D	Uncertainty
				of aerosol
				extinction
				coefficient at
				532 nm
	uncertainty_aerLR_raman_10	m-1	1D	Uncertainty
	64			of aerosol
				1064 nm
	uncertainty aerIR raman 25	cr	1D	Uncertainty
	5	51	ID	of aerosol
	5			lidar ratio at
				355 nm
	uncertainty aerLR raman 53	sr	1D	Uncertainty
	2			of aerosol
				lidar ratio at
				532 nm
	uncertainty_aerLR_RR_1064	sr	1D	Uncertainty
				of aerosol
				lidar ratio at
	D DD off			1064 nm
	uncertainty_aerLR_KR_355	sr	1D	Uncertainty
				lidar ratio at
				255 nm
	uncertainty aerLR RR 532	sr	1D	Uncertainty
	uncertainty_acrint_Itt_1tt_552	51	10	of aerosol
				lidar ratio at
				532 nm
	uncertainty_parDepol_klett_1	-	1D	Uncertainty
	064			of particle
				linear
				depolarizati
				on ratio at
				1064 nm

L2A+

DI05: Output Data Product (OP)

			with Klett backscatter
uncertainty_parDepol_klett_3 55	-	1D	Uncertainty of particle linear depolarizati on ratio at 355 nm with Klett backscattor
uncertainty_parDepol_klett_5 32	-	1D	Uncertainty of particle linear depolarizati on ratio at 532 nm with Klett backscatter
uncertainty_parDepol_raman _1064	-	1D	Uncertainty of particle linear depolarizati on ratio at 1064 nm with Raman backscatter
uncertainty_parDepol_raman _355	-	1D	Uncertainty of particle linear depolarizati on ratio at 355 nm with Raman backscatter
uncertainty_parDepol_raman _532	-	1D	Uncertainty of particle linear depolarizati on ratio at 532 nm with Raman backscatter
uncertainty_volDepol_klett_1 064	-	1D	Uncertainty of volume depolarizati on ratio at 1064 nm
uncertainty_volDepol_klett_3 55	-	1D	Uncertainty of volume depolarizati on ratio at 355 nm

DI05: Output Data Product (OP)

	uncertainty_volDepol_klett_5 32	-	1D	Uncertainty of volume depolarizati on ratio at 532 nm Uncortainty
	_1064	-	U	oncertainty of volume depolarizati on ratio at 1064 nm
	uncertainty_volDepol_raman _355	-	1D	Uncertainty of volume depolarizati on ratio at 355 nm
	uncertainty_volDepol_raman _532	-	1D	Uncertainty of volume depolarizati on ratio at 532 nm
	uncertainty_WVMR	g/km	1D	Absolute water vapor mixing ratio uncertainty
	volDepol_klett_1064	-	1D	Volume linear depolarizati on ratio at 1064 nm with the same smoothing as Klett method
	volDepol_klett_355	-	1D	Volume linear depolarizati on ratio at 355 nm with the same smoothing as Klett method
	volDepol_klett_532	-	1D	Volume linear depolarizati on ratio at 532 nm with the same smoothing as Klett method

L2A+

DI05: Output Data Product (OP)

volDepol raman 1064 - 1D	Volume
	linear
	depolarizati
	on ratio at
	1064 nm
	with the
	same
	same
	as Kalliali mothod
voiDepoi_raman_355 - 1D	Volume
	linear
	depolarizati
	on ratio at
	355 nm with
	the same
	smoothing
	as Raman
	method
volDepol_raman_532 - 1D	Volume
	linear
	depolarizati
	on ratio at
	532 nm with
	the same
	smoothing
	as Raman
	method
WVMR g/kg 1D	Water vapor
	mixing ratio
WVMR_no_QC g/kg 1D	Water vapor
	mixing ratio
	without
	quality
	control
WVMR_rel_err - 1D	Relative
	error of the
	water vapor
	mixing ratio
zenith_angle degre -	mixing ratio Zenith angle

Ref: *Ref: ESA AO/1-11041/22/I-NS* DI05: Output Data Product (OP) Page:

19

L2A+

Name	Long Name	Туре
2021_09_01_Wed_CPV_00_01_01_0001_0100_profiles.nc	2021_09_01_Wed_CPV_00_01_01_0001_0100_profiles.nc	Local File
aerBsc_aeronet_1064	aerosol backscatter coefficient at 1064 nm retrieved with constrained	1D
aerBsc_aeronet_355	aerosol backscatter coefficient at 355 nm retrieved with constrained-A	1D
aerBsc_aeronet_532	aerosol backscatter coefficient at 532 nm retrieved with constrained-A	1D
aerBsc_klett_1064	aerosol backscatter coefficient at 1064 nm retrieved with Klett method	1D
aerBsc_klett_355	aerosol backscatter coefficient at 355 nm retrieved with Klett method	1D
aerBsc_klett_532	aerosol backscatter coefficient at 532 nm retrieved with Klett method	1D
aerBsc_raman_1064	aerosol backscatter coefficient at 1064 nm retrieved with Raman method	1D
aerBsc_raman_355	aerosol backscatter coefficient at 355 nm retrieved with Raman method	1D
aerBsc_raman_532	aerosol backscatter coefficient at 532 nm retrieved with Raman method	1D
aerBsc_RR_1064	aerosol backscatter coefficient at 1064 nm retrieved with rotation Ram	1D
aerBsc_RR_355	aerosol backscatter coefficient at 355 nm retrieved with rotation Rama	1D
aerBsc_RR_532	aerosol backscatter coefficient at 532 nm retrieved with rotation Rama	1D
aerExt_raman_1064	aerosol extinction coefficient at 1064 nm retrieved with Raman method	1D
aerExt_raman_355	aerosol extinction coefficient at 355 nm retrieved with Raman method	1D
aerExt_raman_532	aerosol extinction coefficient at 532 nm retrieved with Raman method	1D
aerExt_RR_1064	aerosol extinction coefficient at 1064 nm retrieved with rotation Rama	1D
aerExt_RR_355	aerosol extinction coefficient at 355 nm retrieved with rotation Raman	1D
aerExt_RR_532	aerosol extinction coefficient at 532 nm retrieved with rotation Raman	1D
aerLR_raman_1064	aerosol lidar ratio at 1064 nm retrieved with Raman method	1D
aerLR raman 355	aerosol lidar ratio at 355 nm retrieved with Raman method	1D
aerLR raman 532	aerosol lidar ratio at 532 nm retrieved with Raman method	1D
aerLR RR 1064	aerosol lidar ratio at 1064 nm retrieved with rotation Raman method	1D
aerLR RR 355	aerosol lidar ratio at 355 nm retrieved with rotation Raman method	1D
aerLR RR 532	aerosol lidar ratio at 532 nm retrieved with rotation Raman method	10
altitude	Height of lidar above mean sea level	-
and time	Time UTC to finish the current measurement	=
A height	Height above the ground	1D
atitude	Latitude of the site	-
Iongitude	Longitude of the site	-
LR aeronet 1064	aerosol lidar ratio at 1064 nm retrieved with constrained-AOD method	_
LR aeronet 355	aerosol lidar ratio at 355 nm retrieved with constrained-AOD method	<u></u>
LR_aeronet_532	aerosol lidar ratio at 532 nm retrieved with constrained-AOD method	<u> </u>
parDepol klett 1064	particle linear depolarization ratio at 1064 nm with Klett backscatter	1D
parDepol klett 355	particle linear depolarization ratio at 355 nm with Klett backscatter	1D
parDepol klett 532	particle linear depolarization ratio at 532 nm with Klett backscatter	1D
parDepol raman 1064	particle linear depolarization ratio at 1064 nm with Raman backscatter	1D
parDepol raman 355	particle linear depolarization ratio at 355 nm with Raman backscatter	1D
parDepol raman 532	particle linear depolarization ratio at 532 nm with Raman backscatter	1D
pressure	pressure	10
reference height 1064	reference height for 1064 nm	1P
reference height 355	reference height for 355 nm	1D
reference height 532	reference height for 532 nm	1D
Q RH	relative humidity	1D
shots	accumulated laser shots	-
start_time	Time UTC to start the current measurement	-
temperature	temperature	1D
uncertainty_aerBsc_aeronet_1064	uncertainty of aerosol backscatter coefficient at 1064 nm	1D
uncertainty_aerBsc_aeronet_355	uncertainty of aerosol backscatter coefficient at 355 nm	1D
uncertainty_aerBsc_aeronet_532	uncertainty of aerosol backscatter coefficient at 532 nm	1D
uncertainty_aerBsc_klett_1064	uncertainty of aerosol backscatter coefficient at 1064 nm	1D
uncertainty_aer8sc_klett_355	uncertainty of aerosol backscatter coefficient at 355 nm	1D
uncertainty_aerBsc_klett_532	uncertainty of aerosol backscatter coefficient at 532 nm	1D
uncertainty_aerBsc_raman_1064	uncertainty of aerosol backscatter coefficient at 1064 nm	1D
uncertainty_aerBsc_raman_355	uncertainty of aerosol backscatter coefficient at 355 nm	1D
uncertainty_aerBsc_raman_532	uncertainty of aerosol backscatter coefficient at 532 nm	1D
uncertainty_aerBsc_RR_1064	uncertainty of aerosol backscatter coefficient at 1064 nm	1D
uncertainty_aerBsc_RR_355	uncertainty of aerosol backscatter coefficient at 355 nm	1D
uncertainty_aerBsc_RR_532	uncertainty of aerosol backscatter coefficient at 532 nm	1D
uncertainty_aerExt_raman_1064	uncertainty of aerosol extinction coefficient at 1064 nm	1D

Ref:Ref: ESA AO/1-11041/22/I-NSDI05:Output Data Product (OP)

). Output Data 1100

Page: 20

uncertainty_aerExt_raman_355	uncertainty of aerosol extinction coefficient at 355 nm	1D
uncertainty_aerExt_raman_532	uncertainty of aerosol extinction coefficient at 532 nm	1D
uncertainty_aerExt_RR_1064	uncertainty of aerosol extinction coefficient at 1064 nm	1D
uncertainty_aerExt_RR_355	uncertainty of aerosol extinction coefficient at 355 nm	1D
uncertainty_aerExt_RR_532	uncertainty of aerosol extinction coefficient at 532 nm	1D
uncertainty_aerLR_raman_1064	uncertainty of aerosol lidar ratio at 1064 nm	1D
uncertainty_aerLR_raman_355	uncertainty of aerosol lidar ratio at 355 nm	1D
uncertainty_aerLR_raman_532	uncertainty of aerosol lidar ratio at 532 nm	1D
uncertainty_aerLR_RR_1064	uncertainty of aerosol lidar ratio at 1064 nm	1D
uncertainty_aerLR_RR_355	uncertainty of aerosol lidar ratio at 355 nm	1D
uncertainty_aerLR_RR_532	uncertainty of aerosol lidar ratio at 532 nm	1D
uncertainty_parDepol_klett_1064	uncertainty of particle linear depolarization ratio at 1064 nm with Klett	1D
uncertainty_parDepol_klett_355	uncertainty of particle linear depolarization ratio at 355 nm with Klett b	1D
uncertainty_parDepol_klett_532	uncertainty of particle linear depolarization ratio at 532 nm with Klett b	1D
uncertainty_parDepol_raman_1064	uncertainty of particle linear depolarization ratio at 1064 nm with Rama	1D
uncertainty_parDepol_raman_355	uncertainty of particle linear depolarization ratio at 355 nm with Raman	1D
uncertainty_parDepol_raman_532	uncertainty of particle linear depolarization ratio at 532 nm with Raman	1D
uncertainty_volDepol_klett_1064	uncertainty of volume depolarization ratio at 1064 nm	1D
uncertainty_volDepol_klett_355	uncertainty of volume depolarization ratio at 355 nm	1D
uncertainty_volDepol_klett_532	uncertainty of volume depolarization ratio at 532 nm	1D
uncertainty_volDepol_raman_1064	uncertainty of volume depolarization ratio at 1064 nm	1D
uncertainty_volDepol_raman_355	uncertainty of volume depolarization ratio at 355 nm	1D
uncertainty_volDepol_raman_532	uncertainty of volume depolarization ratio at 532 nm	1D
uncertainty_WVMR	absolute water vapor mixing ratio uncertainty	1D
volDepol_klett_1064	volume linear depolarization ratio at 1064 nm with the same smoothing	1D
volDepol_klett_355	volume linear depolarization ratio at 355 nm with the same smoothing a	1D
volDepol_klett_532	volume linear depolarization ratio at 532 nm with the same smoothing a	1D
volDepol_raman_1064	volume linear depolarization ratio at 1064 nm with the same smoothing	1D
volDepol_raman_355	volume linear depolarization ratio at 355 nm with the same smoothing a	1D
volDepol_raman_532	volume linear depolarization ratio at 532 nm with the same smoothing a	1D
WVMR	water vapor mixing ratio	1D
WVMR_no_QC	water vapor mixing ratio without Quality control	1D
WVMR_rel_error	relative error of the water vapor mixing ratio	1D
zenith_angle	laser pointing angle with respect to the zenith	_

Figure 3: Indicative file output of PollyXT optical properties.

2.3. Access Credentials

Access to the ESA-L2A+ products are provided according to the following access credentials:

0	
WP2000	
Protocol:	SFTP (Port 22)
Username:	l2aplus_wp2000
Password:	eYst5kuxngzn
Host:	react.space.noa.gr

Table 3: ESA L2A+ WP2000 access credentials.

2.4. Contact Person.

Contact:

Users can contact with Athina Floutsi (floutsi@tropos.de) or/and Holger Baars (baars@tropos.de) for any further details and clarifications regarding the L2A+ dataset outputs of L2A+ WP2000.

Ref:Ref: ESA AO/1-11041/22/I-NSDI05:Output Data Product (OP)Page:21

3. The L2A+ Product.

3.1. Introduction.

This section provides an overview of the novel L2A+ aerosol product established on the basis of Aeolus. More specifically, the product is derived on the basis of a synergistic approach involving spaceborne retrievals from multi-sensors in conjunction with reanalysis numerical outputs and reference ground-based measurements. The period of interest includes the months of July, September of 2021 and June, September of 2022 which coincides with the Joint Aeolus Tropical Atlantic Campaign (JATAC), on the islands of Cabo Verde during the ASKOS experiment. Information on the development is provided in the framework of the ESA L2A+ DIO3 entitled "Description of the Algorithm Developments (ALGO)". The present section provides an overview of the L2A+ products in terms of filename format (Sect.3.2), the L2A+ output products for an indicative Aeolus study case (Sect.3.3), the basic products included in the output NetCDF file (Sect.3.4), access credentials (Sect.3.5), and contact person information (Sect.3.6)

3.2. Filename Format

L2A+ filename: "AE_OPER_ALD_U_N_2A_DD_MMM_YYYY_ hh_mm_ss_ hh_mm_ss.nc"

Table 4. LZA+ mename descrip	<i>1</i> 01.	
Filename Descriptor		Explanation
AE	\Rightarrow	Aeolus mission
OPER	\Rightarrow	File class: Routine operations
ALD	\Rightarrow	Data product from the Aladin instrument
U	\Rightarrow	Unconsolidated
N	\Rightarrow	Nominal instrument operation
2A	\Rightarrow	Product ID: Level 2A product
yyyymmddThhmmsszzz	⇒	start time of sensing (date/time string: precision 1 ms)
'uuuuuuuu'	\Rightarrow	duration/sensing period
'000000'	\Rightarrow	start absolute orbit number
'vvvv	⇒	file version number

Table 4: L2A+ filename descriptor.

3.3. Indicative Study-Case: The Aeolus-Cabo Verde overpass on the 10th of September 2021

3.3.1. Description of the atmospheric scene.

Figure 4a illustrates the L2A+ region of interest with the blue-colored line indicating the ascending ALADIN's measurement track for the given case. Next, Figure 4b illustrates for the specific study case, the time-closest binary cloud mask (CMa) product retrieved from the SEVIRI CLAAS-3 cloud dataset which as we can see in the figure, describes the scene type (either 'clear' or 'cloudy') on a pixel level. The Aeolus's ascending orbit is also depicted on the same figure with the red-coloured line. Based on the specific cloud-filtering procedure, the Aeolus SCA, SCA mid-bin and MLE backscatter retrievals, throughout the probed atmosphere by ALADIN, have been excluded from the analysis when the cloud fraction in each BRC profile exceeds a given threshold value (60% in this case).

Figure 4: a) Aeolus ascending orbit (id: 017679) over the L2A+ RoI on 10th September 2021 and b) the time-closest spatial distribution of clouds derived from the binary cloud-mask product of MSG-SEVIRI CLAAS-3 dataset.

In Figure 5a, the retrieved AEL-FM feature-mask product along the given Aeolus's measurement track is presented where we can observe the classified features of the probed atmospheric scene. It can be seen that the features associated with "strong" returns mainly attributed to clouds or high optically thick aerosol layers are colorized in brown and orange respectively while those associated with the molecular atmosphere or clear sky conditions are colorized in green and cyan respectively. According to the figure, one can clearly distinguish a large number of strong features that have been classified as (likely and most likely) clouds (FM values of 6 to 10) along the largest part of the given Aeolus's measurement track and especially between latitudes of 0 and 7° N and altitudes between 4 and 14 km above the ground. Following our filtering methodology, these features can be detected and excluded from the analysis in order to acquire the pure aerosol profiles. In the two figures below, the transformed feature mask product to the Aeolus's horizontal and vertical resolution is provided separately for the regular Aeolus's vertical scale (24 vertical bins) (Figure 5b) and middle-bin (23 vertical bins) scale (Figure 5c) with each bin expressing the cloud fraction (in %) of the specific BRC bin after computing the total percentage of cloud-contaminated measurements for the specific bin. Based on the transformed feature mask product, all Aeolus's BRC bins with cloud fraction exceeding 0% were excluded from the analysis with the corresponding bins of the SCA, SCA mid-bin and MLE backscatter profiles.

ESA-L2A+ Deliverable Item 05 [DI05]

Figure 5: a) AEL-FM feature mask product along the Aeolus orbit (id: 017679) on 10th September 2021 and the transformed feature mask product on the Aeolus vertical and horizontal resolution for the b) regular (24 bins) and c) middle-bin scale (23 bins).

In the figure below, we present the horizontally integrated and vertically resolved Aeolus-like dust mass concentration profiles from CAMS along the Aeolus orbit (id: 017679), provided separately for the regular (Figure 6a) and middle-bin (Figure 6c) Aeolus' vertical scales (24, and 23 vertical bins respectively). According to the figure, a dust layer is identified over the latitudinal band of 5° - 25° N and up to 6km with elevated dust mass concentration values exceeding in many cases the value of 50 µg/m³. Additionally, for both vertical scales, the vertical profiles of the dust-to-total mass concentration ratio values (in percentage) along the Aeolus measurement track are also depicted in Figures 6b, and d. Based on both parameters retrieved from CAMS, the pure dust profiles were derived after eliminating all the BRC bins with dust concentration below 1.3 µg/m³ (median value) and dust-to-total ratio below 50%.

ESA-L2A+ Deliverable Item 05 [DI05]

L2A+Ref:Ref: ESA AO/1-11041/22/I-NSDI05:Output Data Product (OP)Page:24

Figure 6: Vertical profiles of CAMS dust mass concentration and dust-to-total aerosol mass concentration ratio along the Aeolus orbit (id: 017679) provided in the regular (a, b) and middle-bin (c, d) vertical scales on the 10th of September 2021.

For the specific study case, the time-closest vertical profiles of CALIPSO total backscatter coefficient at 532 nm (Figure 7a), particulate depolarization ratio at 532 nm (Figure 7b) and the quality-assured (QA) pure-aerosol (Figure 7c) and pure-dust backscatter coefficient (Figure 7d) are also illustrated.

Figure 7: (a) CALIPSO total backscatter coefficient at 532 nm. (b) CALIPSO particulate depolarization ratio at 532 nm (c) CALIPSO QA pure-aerosol total backscatter coefficient at 532 nm (d) CALIPSO QA pure-dust backscatter coefficient at 532 nm.

Ref: *Ref: ESA AO/1-11041/22/I-NS*DI05: Output Data Product (OP)Page: 25

3.3.2. Aeolus Optical Products.

In figure 8, the left panel illustrates the vertical profiles of the raw (unprocessed) Aeolus L2A retrievals of backscatter coefficient at 355 nm along the Aeolus overpass (id 017679), produced by the SCA, SCA mid-bin and MLE algorithms, while the right panel depicts the quality-assured (QA) backscatter profiles derived from the corresponding algorithms after implementing the cloud-filtering methodology using both the AEL-FM feature mask and MSG-SEVIRI Claas-3 cloud-mask retrievals. It has to be noted that the later ones correspond to the pure-aerosol backscatter profiles along the Aeolus overpass, since most of bins were rejected from the cloud-filtering process.

L2A+

Figure 8: Raw Aeolus L2A backscatter profiles at 355 nm along the Aeolus orbit (id 017679) retrieved from the SCA, SCA mid-bin and MLE algorithms (left panel) and the corresponding QA pure-aerosol backscatter profiles at 355 nm for the SCA, SCA mid-bin and MLE algorithms (right panel).

Ref:Ref: ESA AO/1-11041/22/I-NSDI05:Output Data Product (OP)Page:26

3.3.3. L2A and L2A+ products.

Figure 9 gives for the given study case, an example of the pure-dust Aeolus co-polar backscatter profiles at 355 nm produced with the SCA and SCA mid-bin algorithms and the associated missing cross-polar backscatter component for each profile. Using both backscatter components (co + cross) the total (L2A+) backscatter profiles at 355 nm were derived and were used for the reconstruction of the pure-dust L2A extinction coefficient.

L2A+

Figure 9: Co-polar and cross polar backscatter profiles along the Aeolus overpass (id 017679) for the SCA (a, b) and SCA mid-bin algorithms (c, d).

3.3.4. L2A+ - ESA-eVe validation.

The present section gives the intercomparison of Aeolus L2A and L2A+ aerosol optical products, in particular the backscatter coefficient at 355 nm retrieved with the SCA, SCA mid-bin and MLE algorithms against ground-based measurements from eVe lidar collected during the ASKOS experiment, under the Joint Aeolus Tropical Atlantic Campaign 2021 (JATAC), on the islands of Cabo Verde. The process was performed considering the raw (unprocessed) Aeolus L2A co-polar backscatter profiles at 355 nm for each of the aforementioned algorithms (SCA, SCA mid-bin, MLE) and the quality-assured (QA) pure-dust total (L2A+) backscatter profiles at 355 nm after the adjustment of the missing cross-polar component. It has to be noted that only the quality-assured (cloud-free) ground-based measurements were used for the comparison process. In the specific example, we present the intercomparison process which serves as a graphic example of the Aeolus performance for the first study case on 10th September 2021 presented in Figure 10.

Ref:Ref: ESA AO/1-11041/22/I-NSDI05:Output Data Product (OP)Page:27

According to our results, comparing the raw (left panel) and the QA Aeolus retrievals (right panel), it can be noticed that the implementation of the cloud-filtering and dust-typing methodologies for the derivation of the new Aeolus product (L2A+) produces a notable decrease in the amount of available data points since most of bins were rejected from the analysis. This can be noticed at around 6km where the large backscatter coefficients of the raw Aeolus L2A retrievals mostly attributed to cloud presence have been excluded in the QA retrievals. Moreover, looking at the raw Aeolus L2A retrievals, it can also be noticed a surface-related effect in the lowermost bins, retrievals an unreasonably large co-polar backscatter coefficient which was also rejected in the QA retrievals.

L2A+

Next, focusing on the pure-dust layers of Aeolus L2A and L2A+ retrievals in Figure 10 (right panel), it can be noticed that after the correction of the backscattered signal, the L2A+ backscatter profiles present a better agreement with ground-based measurements than L2A retrievals. Especially, a fair agreement between the Aeolus L2A+ backscatter profile for the MLE algorithm and the corresponding ground-based system is pointed out throughout the vertical range of the detected dust layer.

Figure 10: Vertical profiles of the raw Aeolus L2A and QA L2A+ backscatter coefficient at 355 nm retrieved from the SCA, SCA mid-bin and MLE algorithms with the corresponding backscatter profiles at 355 nm acquired by eVe ground-based lidar (left panel), and QA Aeolus L2A and L2A+ backscatter profiles for the SCA, SCA mid-bin and MLE algorithms with the derived backscatter profiles from eVe lidar (right panel).

Ref: *Ref: ESA AO/1-11041/22/I-NS*DI05: Output Data Product (OP)
Page: 29

3.3.5. L2A+ - ESA-PollyXT validation

The same intercomparison process was also performed between the vertically resolved Aeolus L2A/L2A+ backscatter coefficient at 355 nm for the SCA, SCA mid-bin and MLE algorithms and the corresponding time-nearest backscatter profiles at 532 nm from the Polly^{XT} ground-based lidar operated at Mindelo station, Cabo Verde. The obtained results are presented in Figure 11 for the given study case on 10th September 2021. According to the results, we point out for the pure-dust layers (right panel), that for all the Aeolus L2A retrieval algorithms including the SCA, SCA mid-bin and MLE algorithms, the backscatter coefficient is underestimated throughout the whole vertical range of the detected dust layer. This difference is mostly attributed to the misdetection of the crosspolar component of the backscattered lidar signal when non-spherical mineral particles are recorded. Gkikas et al. (2023) also presented an underestimation that reached up to 33% in the aerosol backscatter coefficient after comparing the PollyXT and Aeolus-like PollyXT backscatter profiles for a study case on 10th July 2019 corroborating our findings. On the other hand, based on our results we can see that this difference is minimized and the satellite presents a satisfactory agreement with PollyXT lidar in the whole available profile when comparing the corrected L2A+ pure-dust total backscatter coefficient with the PollyXT-derived backscatter profile for all the available algorithms.

Figure 11: Vertical profiles of the raw Aeolus L2A and QA L2A+ backscatter coefficient at 355 nm retrieved from the SCA, SCA mid-bin and MLE algorithms with the corresponding backscatter profiles at 355 nm acquired by PollyXT ground-based lidar (left panel), and QA Aeolus L2A and L2A+ backscatter profiles for the SCA, SCA mid-bin and MLE algorithms with the derived backscatter profiles from PollyXT lidar (right panel).

Ref: *Ref: ESA AO/1-11041/22/I-NS*DI05: Output Data Product (OP)
Page: 31

3.4. The L2A+ products

This section provides an overview of the variables included in the L2A+ output files.

Group	Subgroup	Variable	Units	Dimensions	Description
GEOLOCATION	DEM_INTERSECTION	measdem	m	1d (measurements)	Altitude relative to the geoid of the intersection of the DEM and the line-of- sight.
		measdomlat	degrees north	1d (measurements)	Latitude of the intersection of the DEM and the line-of- sight.
		measdomlon	degrees east	1d (measurements)	Longitude of the intersection of the DEM and the line-of- sight.
	MIDDLE_BIN_SCALE	measdomtime	Date format	1d (measurements)	Measurement centroid time from L1B.
		alt	m	2d (mb-lays, profs)	Bottom altitude of the middle bin.
		lat	degrees north	2d (mb-lays, profs)	Latitude of the start point of the profile middle bin.
		lon	degrees east	2d (mb-lays, profs)	Longitude of the start point of the profile middle bin.
	REGULAR_SCALE	alt	m	2d (lays, profs)	Altitude of the lower edge of the height bin along the line- of-sight.
		lat	degrees north	2d (lays, profs)	Latitude of the lower edge of the height bin

Table 5: Detailed description of the groups and variables of the final output L2A+ product.

ESA-L2A+ Deliverable Item 05 [DI05]

DI05: Output Data Product (OP)

					along the line- of-sight.
		lon	degrees east	2d (lays, profs)	Longitude of the lower edge of the height bin along the line-of-sight.
RAW DATA	SCA	alpha	10 ⁻⁶ m ⁻¹	2d (lays, profs)	Particle extinction coefficient of the bin.
		alpha_error	10 ⁻⁶ m ⁻¹	2d	Extinction
				(lays, profs)	error
		Aec	olus Ascending	orbit [17 Sep 2021]	
		²⁴ ²² ²⁰ ¹⁸ ¹⁴ ⁹ ¹⁴ ⁹ ¹² ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	2,2,2 ⁽¹⁾ ,2,9 ⁽¹⁾ ,5 ⁽⁰⁾ ,3 ⁽²⁾ ,2 ⁽	$^{3)}_{2,2}$, $^{3)}_{2,3}$, $^{60}_{2,1}$, $^{22}_{3,0}$, $^{90}_{3,1}$, $^{40}_{3,7}$, $^{3)}_{4,5}$, $^{30}_{2,5}$, $^{50}_{2,7}$, $^{50}_{2,7}$, $^{50}_{2,9}$, $^{70}_{2,9}$, 70	coefficient for an r 2021 (orbit id:
		beta	10 ⁻⁶ sr ⁻¹ m ⁻¹	2d (lays, profs)	Particle backscatter coefficient of the bin
		beta_error	10 ⁻⁶ sr ⁻¹ m ⁻¹	2d (lays, profs)	Backscatter error

L2A+

L2A+

DI05: Output Data Product (OP)

	Aeo	olus Ascending	g orbit [17 Sep 2021] me (TAI)	
	19:32:32 19:34:08 22 20 18 14 9 12 10 10 10 10 10 10 10 10 10 10	19:35:44 19:37:20	³⁾ 19:38:56 19:40:32 19:42:08 1 ³⁾ 19:38:56 19:40:32 19:40:32 19:42:08 1 ³⁾ 19:38:56 19:40:32 19:42:08 1 ³⁾ 19:38:56 19:40:32 19:40:32 19:42:08 1 ³⁾ 19:38:56 19:40:32 19:40:32 19:40:32 19:40:32 19:40:30 19:40 19:4	Backscatter coefficient (Mm ⁻¹ sr ⁻¹)
	lr	sr	2d (lays, profs)	Particle extinction-to- backscatter ratio.
	qcflag	No Units	3d (Qcflags, lays, profs)	QC information about processing (1=data valid, otherwise 0). Bit 1: Extinction, 2: Backscatter, 3: BER, 4: Mie SNR, 5: Rayleigh SNR, 6: Extinction error bar, 7: Backscatter error bar, 8: Cumulative LOD"
	time	Date format	1d (profs)	Start date and time of the SCA profile covered by the present DSR.
SCA_MID_BIN	alpha	10 ⁻⁶ m ⁻¹	2d (lays, profs)	Particle extinction coefficient of the middle bin.
	alpha_error	10 ⁻⁶ m ⁻¹	2d (mb-lays, profs)	Extinction error.

L2A+

DIo5: Output Data Product (OP)

	time	Date format	1d (profs)	Start date and time of the SCA profile covered by the present DSR.
MLE	alpha	10 ⁻⁶ m ⁻¹	2d (lays, profs)	Particle extinction coefficient of the bin.
	alpha_error	10 ⁻⁶ m ⁻¹	2d (lays, profs)	Extinction error
	Account of the second s	lus Ascending 19:35:44 19:37:20 19:35:44 19:37:20 19:35:44 19:37:20 19:35:44 19:37:20 19:37:20 19:35:44 19:37:20 10:40 1	ne (TAI) 19:38:56 19:40:32 19:42:08 1 19:38:56 19:40:32 19:42:08 1 19:38:56 19:40:32 19:42:08 1 19:38:56 19:40:32 19:42:08 1 19:42:08	9:43:44 700 tin 500 for 100 fficient 100 fficient
	Deta	10- ⁶ sr-1 m ⁻¹	20 (lays, profs)	Particle backscatter coefficient of the bin
	beta_error	10 ⁻⁶ sr ⁻¹ m ⁻¹	2d (lays, profs)	Backscatter error

DI05: Output Data Product (OP)

L2A+

Ref:Ref: ESA AO/1-11041/22/I-NSDI05:Output Data Product (OP)

L2A+

TROPOS

ECMWF

Ref: *Ref: ESA AO/1-11041/22/I-NS*

DI05: Output Data Product (OP)

L2A+

DI05: Output Data Product (OP)

ESA-L2A+ Deliverable Item 05 [DI05]

DI05: Output Data Product (OP)

Ref: Ref: ESA AO/1-11041/22/I-NS

DI05: Output Data Product (OP)

Ref: *Ref: ESA AO/1-11041/22/I-NS*

DI05: Output Data Product (OP)

Ref: *Ref: ESA AO/1-11041/22/I-NS*

DI05: Output Data Product (OP)

L2A+

DI05: Output Data Product (OP)

L2A+

DIo5: Output Data Product (OP)

Ref: *Ref: ESA AO/1-11041/22/I-NS*

DIo5: Output Data Product (OP)

L2A+

DI05: Output Data Product (OP)

L2A+

DIo5: Output Data Product (OP)

Page: 47

ESA-L2A+ Deliverable Item 05 [DI05]

L2A+

DIo5: Output Data Product (OP)

L2A+

DI05: Output Data Product (OP)

Page: 50

Name	Long Name	Туре
▼ 😂 AE_OPER_ALD_U_N_2A_20210910T181932020_00	AE_OPER_ALD_U_N_2A_20210910T181932020_008508008	Local File
V 💟 CLOUD_FILTERED	CLOUD_FILTERED	-
🕨 🎑 MLE	MLE	-
🕨 🎑 SCA	SCA	-
🕨 🎑 SCA_MID_BIN	SCA_MID_BIN	-
V 📓 GEOLOCATION	GEOLOCATION	-
DEM_INTERSECTION	DEM_INTERSECTION	-
MIDDLE_BIN_SCALE	MIDDLE_BIN_SCALE	-
REGULAR_SCALE	REGULAR_SCALE	-
V 🎑 L2APLUS	L2APLUS	-
V 🎑 MLE	MLE	-
alpha_plus_355	L2A+ extinction coefficient at 355nm	2D
alpha_plus_532	L2A+ extinction coefficient at 532nm	2D
beta_co	Co-component of backscatter coefficient	2D
beta_cross	Cross-component of backscatter coefficient	2D
beta_total	Total backscatter coefficient	2D
dust_concentration	Dust mass concentration	2D
🕨 🌄 SCA	SCA	-
🕨 🎑 SCA_MID_BIN	SCA_MID_BIN	-
V 🌄 PURE_DUST	PURE_DUST	-
🕨 🌄 MLE	MLE	-
🕨 🌄 SCA	SCA	-
🕨 🌄 SCA_MID_BIN	SCA_MID_BIN	-
V 💟 RAW_DATA	RAW_DATA	-
🕨 💟 MLE	MLE	-
🕨 💟 SCA	SCA	-
SCA_MID_BIN	SCA_MID_BIN	-

Figure 47: Indicative file output of the L2A/L2A+ optical properties.

Ref: *Ref: ESA AO/1-11041/22/I-NS*DI05: Output Data Product (OP)
Page: 51

3.5. Access Credentials

Access to the ESA-L2A+ products are provided according to the following access credentials:

Table 6: ESA-L2A+ WP3000 access credentials.

L2A+ OPs	
Protocol:	SFTP (Port 22)
Username:	l2aplus_wp2000
Password:	eYst5kuxngzn
Host:	react.space.noa.gr

3.6. Contact Person

Contact:

Users can contact with Konstantinos Rizos (k.rizos@noa.gr) for any further details and clarifications regarding the L2A+ dataset.

Ref: *Ref: ESA AO/1-11041/22/I-NS*

DI05: Output Data Product (OP)

Page: 52

Acronyms and Abbreviations

L2A	Aeolus Level 2A product
L2A+	Improved Aeolus Level 2A product
SCA	Standard Correct Algorithm
SCA_MID_BIN	Standard Correct Algorithm at the Middle-Bin vertical scale

List of Figures

Figure	Description	
01	ESA-L2A+ WP2000, WP3000, and WP4000 input and outputs relevant to DI05	
02	Indicative file output of Unique feature mask over Mindelo	
03	Indicative file output of PollyXT ontical properties	
04	a) Aeolus ascending orbit (id: 017679) over the L2A+ RoI on 10th September 2021 and b) the time-closest spatial distribution of clouds derived from the binary cloud-mask product of MSG-SEVIRI CLAAS-3 dataset	
05	a) AEL-FM feature mask product along the Aeolus orbit (id: 017679) on 10th September 2021 and the transformed feature mask product on the Aeolus vertical and horizontal resolution for the b) regular (24 bins) and c) middle-bin scale (23 bins).	
06	Vertical profiles of CAMS dust mass concentration and dust-to-total aerosol mass concentration ratio along the Aeolus orbit (id: 017679) provided in the regular (a, b) and middle-bin (c, d) vertical scales on the 10th of September 2021.	
07	(a) CALIPSO total backscatter coefficient at 532 nm. (b) CALIPSO particulate depolarization ratio at 532 nm (c) CALIPSO QA pure-aerosol total backscatter coefficient at 532 nm (d) CALIPSO QA pure-dust backscatter coefficient at 532 nm.	
08	Raw Aeolus L2A backscatter profiles at 355 nm along the Aeolus orbit (id 017679) retrieved from the SCA, SCA mid-bin and MLE algorithms (left panel) and the corresponding QA pure-aerosol backscatter profiles at 355 nm for the SCA, SCA mid-bin and MLE algorithms (right panel).	
09	Co-polar and cross polar backscatter profiles along the Aeolus overpass (id 017679) for the SCA (a, b) and SCA mid-bin algorithms (c, d).	
10	Vertical profiles of the raw Aeolus L2A and QA L2A+ backscatter coefficient at 355 nm retrieved from the SCA, SCA mid-bin and MLE algorithms with the corresponding backscatter profiles at 355 nm acquired by eVe ground-based lidar (left panel), and QA Aeolus L2A and L2A+ backscatter profiles for the SCA, SCA mid-bin and MLE algorithms with the derived backscatter profiles from eVe lidar (right panel).	
11	Vertical profiles of the raw Aeolus L2A and QA L2A+ backscatter coefficient at 355 nm retrieved from the SCA, SCA mid-bin and MLE algorithms with the corresponding backscatter profiles at 355 nm acquired by PollyXT ground-based lidar (left panel), and QA Aeolus L2A and L2A+ backscatter profiles for the SCA, SCA mid-bin and MLE algorithms with the derived backscatter profiles from PollyXT lidar (right panel).	
12	Raw profiles of L2A SCA extinction coefficient for an indicative Aeolus overpass on 17th of September 2021 (orbit id: 017790).	
13	Raw profiles of L2A SCA backscatter coefficient for the Aeolus overpass on 17th of September 2021.	
14	Raw profiles of L2A SCA Mid-Bin extinction coefficient for the Aeolus overpass on 17th of September 2021.	

Ref: *Ref: ESA AO/1-11041/22/I-NS*

DI05: Output Data Product (OP)

15	Raw profiles of L2A SCA Mid-Bin backscatter coefficient for the Aeolus
	overpass on 17th of September 2021.
16	Raw profiles of L2A MLE extinction coefficient for an indicative Aeolus
	overpass on 17th of September 2021 (orbit id: 017790).
17	Raw profiles of L2A MLE backscatter coefficient for the Aeolus overpass on
	17th of September 2021.
18	Cloud-filtered profiles of L2A SCA extinction coefficient.
19	Cloud-filtered profiles of L2A SCA backscatter coefficient.
20	Cloud-filtered profiles of L2A SCA Mid-Bin extinction coefficient.
21	Cloud-filtered profiles of L2A SCA Mid-Bin backscatter coefficient.
22	Cloud-filtered profiles of L2A MLE extinction coefficient.
23	Cloud-filtered profiles of L2A MLE backscatter coefficient.
24	Cloud-free dust profiles of L2A SCA extinction coefficient.
25	Cloud-free dust profiles of L2A SCA backscatter coefficient.
26	Cloud-free dust profiles of L2A SCA Mid-Bin extinction coefficient.
27	Cloud-free dust profiles of L2A SCA Mid-Bin backscatter coefficient.
28	Cloud-free dust profiles of L2A MLE extinction coefficient.
29	Cloud-free dust profiles of L2A MLE backscatter coefficient.
30	Provides the vertical profiles of the co-component of backscatter coefficient
Ŭ	along the Aeolus overpass.
31	Profiles of the SCA Cross-component backscatter coefficient along the Aeolus
Ŭ	overpass (id:017790).
32	Profiles of the total (co + cross components) SCA backscatter coefficient.
33	Profiles of the reconstructed L2A+ SCA extinction coefficient at 355nm.
34	Profiles of the reconstructed L2A+ SCA extinction coefficient at 532nm.
35	Profiles of the L2A+ dust mass concentration along the Aeolus overpass
	(id:017790).
36	Profiles of the SCA Mid-Bin Cross-component backscatter coefficient along
	the Aeolus overpass (id:017790).
37	Profiles of the total (co + cross components) SCA Mid-Bin backscatter
	coefficient.
38	Profiles of the reconstructed L2A+ SCA Mid-Bin extinction coefficient at
	355nm.
39	Profiles of the reconstructed L2A+ SCA Mid-Bin extinction coefficient at
	532nm.
40	Profiles of the L2A+ dust mass concentration at Mid-Bin scale along the
	Aeolus overpass (id:017790).
41	Vertical profiles of the MLE co-component of backscatter coefficient along the
	Aeolus overpass.
42	Profiles of the MLE Cross-component backscatter coefficient along the Aeolus
	overpass (id:017790).
43	Profiles of the total (co + cross components) MLE backscatter coefficient.
44	Profiles of the reconstructed L2A+ MLE extinction coefficient at 355nm.
45	Profiles of the reconstructed L2A+ MLE extinction coefficient at 532nm.
46	Profiles of the L2A+ MLE dust mass concentration along the Aeolus overpass
	(1d:017790).
47	Indicative file output of the L_{2A}/L_{2A} optical properties.

Ref:Ref: ESA AO/1-11041/22/I-NSDI05:Output Data Product (OP)Page:54

List of Tables

Table	Description
01	Provides the vertical profiles of the co-component of backscatter coefficient
	along the Aeolus overpass.
02	Detailed description of the variables within the PollyXT profile product.
03	ESA L2A+ WP2000 access credentials.
04	L2A+ filename descriptor.
05	Detailed description of the groups and variables of the final output L2A+
	product.
06	ESA-L2A+ WP3000 access credentials.

$$L2A+$$

DI05: Output Data Product (OP)

Page: 55

[End of ESA-L2A+ DI05 - OP]